270 research outputs found

    Case study of MHD blood flow in a porous medium with CNTs and thermal analysis

    Get PDF
    This articles deals with unsteady MHD free convection flow of blood with carbon nanotubes. The flow is over an oscillating vertical plate embedded in a porous medium. Both single-wall carbon nanotubes (SWCNTs) and multiple-wall carbon nanotubes (MWCNTs) are used with human blood as base fluid. The problem is modelled and then solved for exact solution using the Laplace transform technique. Expressions for velocity and temperature are determined and expressed in terms of complementary error functions. Results are plotted and discussed for embedded parameters. It is observed that velocity decreases with increasing CNTs volume fraction and an increase in CNTs volume fraction increases the blood temperature, which leads to an increase in the heat transfer rates. A validation of the present work is shown by comparing the current results with existing literature

    Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid

    Get PDF
    In current two dimensional nanomaterial convective flow, Lorentz force has been utilized to manage the flow pattern. Nano sized powders with homogeneous behavior were dispersed into H2O within a permeable media. Not only the buoyancy force but also the radiation affects the temperature distribution. In addition, nanoparticles’ shape was involved in correlation of estimating nanomaterial behavior. Result demonstrated that convective flow augments with both Rayleigh and Darcy number and lessen with respect to Hartman number. Augmenting Darcy number wills leads to reduce the effect of Lorentz forces. Nuave augment with thermal radiation Rd and decrease with Hartmann number Ha. Thinner boundary layer is an output of augmenting permeability

    A cost effectiveness analysis of salt reduction policies to reduce coronary heart disease in four Eastern Mediterranean countries.

    Get PDF
    BACKGROUND: Coronary Heart Disease (CHD) is rising in middle income countries. Population based strategies to reduce specific CHD risk factors have an important role to play in reducing overall CHD mortality. Reducing dietary salt consumption is a potentially cost-effective way to reduce CHD events. This paper presents an economic evaluation of population based salt reduction policies in Tunisia, Syria, Palestine and Turkey. METHODS AND FINDINGS: Three policies to reduce dietary salt intake were evaluated: a health promotion campaign, labelling of food packaging and mandatory reformulation of salt content in processed food. These were evaluated separately and in combination. Estimates of the effectiveness of salt reduction on blood pressure were based on a literature review. The reduction in mortality was estimated using the IMPACT CHD model specific to that country. Cumulative population health effects were quantified as life years gained (LYG) over a 10 year time frame. The costs of each policy were estimated using evidence from comparable policies and expert opinion including public sector costs and costs to the food industry. Health care costs associated with CHDs were estimated using standardized unit costs. The total cost of implementing each policy was compared against the current baseline (no policy). All costs were calculated using 2010 PPP exchange rates. In all four countries most policies were cost saving compared with the baseline. The combination of all three policies (reducing salt consumption by 30%) resulted in estimated cost savings of 235,000,000and6455LYGinTunisia;235,000,000 and 6455 LYG in Tunisia; 39,000,000 and 31674 LYG in Syria; 6,000,000and2682LYGinPalestineand6,000,000 and 2682 LYG in Palestine and 1,3000,000,000 and 378439 LYG in Turkey. CONCLUSION: Decreasing dietary salt intake will reduce coronary heart disease deaths in the four countries. A comprehensive strategy of health education and food industry actions to label and reduce salt content would save both money and lives

    Incorporation of Labelled Amino Acid into Ova during Ovarian Development in the Silkworm, Bombyx mori L.

    Get PDF
    © 2019 Elsevier B.V. Helical turbulator has been adopted in this article, to enhance the convective flow within a pipe. Homogeneousmodel was carried out for nanomaterial modeling. The Reynolds number (Re) and width of turbulator (b) vary from 5000 to 15000 and 5 to 15mm, respectively. Copper oxide nanoparticles were considered as an additive in to pure carrier fluid to gain better thermal behavior. Furthermore, exergy loss distributions for different cases have been reported. Outputs indicate that disturbance of the boundary layer enhances with rise of b. Mixing of core nanofluid flow and boundary layer enhances with augment of width of turbulator

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation

    Novel sequence variations in LAMA2 andSGCG genes modulating cis-acting regulatory elements and RNA secondary structure

    Get PDF
    In this study, we detected new sequence variations in LAMA2 and SGCG genes in 5 ethnic populations, and analysed their effect on enhancer composition and mRNA structure. PCR amplification and DNA sequencing were performed and followed by bioinformatics analyses using ESEfinder as well as MFOLD software. We found 3 novel sequence variations in the LAMA2 (c.3174+22_23insAT and c.6085 +12delA) and SGCG (c. * 102A/C) genes. These variations were present in 210 tested healthy controls from Tunisian, Moroccan, Algerian, Lebanese and French populations suggesting that they represent novel polymorphisms within LAMA2 and SGCG genes sequences. ESEfinder showed that the c. * 102A/C substitution created a new exon splicing enhancer in the 3'UTR of SGCG genes, whereas the c.6085 +12delA deletion was situated in the base pairing region between LAMA2 mRNA and the U1snRNA spliceosomal components. The RNA structure analyses showed that both variations modulated RNA secondary structure. Our results are suggestive of correlations between mRNA folding and the recruitment of spliceosomal components mediating splicing, including SR proteins. The contribution of common sequence variations to mRNA structural and functional diversity will contribute to a better study of gene expression

    Can parasites adapt to pollutants? A multigenerational experiment with a Daphnia x Metschnikowia model system exposed to the fungicide tebuconazole

    Get PDF
    There is increasing evidence about negative effects of fungicides on non-target organisms, including parasitic species, which are key elements in food webs. Previous experiments showed that environmentally relevant concentrations of fungicide tebuconazole are toxic to the microparasite Metschnikowia bicuspidata, a yeast species that infects the planktonic crustacean Daphnia spp. However, due to their short-term nature, this and other experimental studies were not able to test if parasites could potentially adapt to these contaminants. Here, we tested if M. bicuspidata parasite can adapt to tebuconazole selective pressure. Infected D. magna lineages were reared under control conditions (no tebuconazole) and environmentally realistic tebuconazole concentrations, for four generations, and their performance was compared in a follow-up reciprocal assay. Additionally, we assessed whether the observed effects were transient (phenotypic) or permanent (genetic), by reassessing parasite fitness after the removal of selective pressure. Parasite fitness was negatively affected throughout the multigenerational exposure to the fungicide: prevalence of infection and spore load decreased, whereas host longevity increased, in comparison to control (naive) parasite lineages. In a follow-up reciprocal assay, tebuconazole-conditioned (TEB) lineages performed worse than naive parasite lineages, both in treatments without and with tebuconazole, confirming the cumulative negative effect of tebuconazole. The underperformance of TEB lineages was rapidly reversed after removing the influence of the selective pressure (tebuconazole), demonstrating that the costs of prolonged exposure to tebuconazole were phenotypic and transient. The microparasitic yeast M. bicuspidata did not reveal potential for rapid evolution to an anthropogenic selective pressure; instead, the long-term exposure to tebuconazole was hazardous to this non-target species. These findings highlight the potential environmental risks of azole fungicides on non-target parasit- This work was supported by the European Regional Development Fund (programmes COMPETE2020 and PT2020) and by National Funds (Portuguese Science Foundation - FCT, I.P.), through the strategic programmes UID/AMB/50017/2013 and UID/BIA/04050/2019 (POCI-01-0145-FEDER-007569), as well as by the research projects FunG-Eye (POCI-01-0145-FEDER-029505) and EcoAgriFood (NORTE-01-0145-FEDER-000009). Part of the work presented here was developed during the PhD of Ana P. Cuco, who was supported by FCT (PhD grant SFRH/BD/81661/2011). JW was supported by Beethoven Life-1 grant from the German Science Foundation and Polish National Science Center (WO 1587/9-1). Nelson Abrantes is the recipient of an individual postdoctoral research contract (CEECIND/01653/2017)

    A Mutation in Myo15 Leads to Usher-Like Symptoms in LEW/Ztm-ci2 Rats

    Get PDF
    The LEW/Ztm-ci2 rat is an animal model for syndromal deafness that arose from a spontaneous mutation. Homozygous animals show locomotor abnormalities like lateralized circling behavior. Additionally, an impaired vision can be observed in some animals through behavioral studies. Syndromal deafness as well as retinal degeneration are features of the Usher syndrome in humans. In the present study, the mutation was identified as a base substitution (T->C) in exon 56 of Myo15, leading to an amino acid exchange from leucine (Leu) to proline (Pro) within the carboxy-terminal MyTH4 domain in the proteins' tail region. Myo15 mRNA was expressed in the retina as demonstrated for the first time with the help of in-situ hybridization and PCR. To characterize the visual phenotype, rats were examined by scotopic and photopic electroretinography and, additionally, histological analyses of the retinas were conducted. The complete loss of sight was detected along with a severe degeneration of photoreceptor cells. Interestingly, the manifestation of the disease does not solely depend on the mutation, but also on environmental factors. Since the LEW/Ztm-ci2 rat features the entire range of symptoms of the human Usher syndrome we think that this strain is an appropriate model for this disease. Our findings display that mutations in binding domains of myosin XV do not only cause non-syndromic hearing loss but can also lead to syndromic disorders including retinal dysfunction

    Openness in Education as a Praxis: From Individual Testimonials to Collective Voices

    Get PDF
    Why is Openness in Education important, and why is it critically needed at this moment? As manifested in our guiding question, the significance of Openness in Education and its immediate necessity form the heart of this collaborative editorial piece. This rather straightforward, yet nuanced query has sparked this collective endeavour by using individual testimonies, which may also be taken as living narratives, to reveal the value of Openness in Education as a praxis. Such testimonies serve as rich, personal narratives, critical introspections, and experience-based accounts that function as sources of data. The data gleaned from these narratives points to the understanding of Openness in Education as a complex, multilayered concept intricately woven into an array of values. These range from aspects such as sharing, access, flexibility, affordability, enlightenment, barrier-removal, empowerment, care, individual agency, trust, innovation, sustainability, collaboration, co-creation, social justice, equity, transparency, inclusivity, decolonization, democratisation, participation, liberty, and respect for diversity. This editorial, as a product of collective endeavour, invites its readers to independently engage with individual narratives, fostering the creation of unique interpretations. This call stems from the distinctive character of each narrative as they voice individual researchers’ perspectives from around the globe, articulating their insights within their unique situational contexts
    corecore